Global exponential stability and periodic solutions of recurrent neural networks with delays
نویسندگان
چکیده
In this Letter, by utilizing the Lyapunov functional method, applying M-matrix and topological degree theory, we analyze the global exponential stability and the existence of periodic solutions of a class of recurrent neural networks with delays. Some simple and new sufficient conditions ensuring existence, uniqueness and global exponential stability of the equilibrium point and periodic solutions of delayed recurrent neural networks are obtained, which do not require the activation functions to be differentiable, bounded and monotone nondecreasing. In addition, two examples are also given to illustrate the theory. 2002 Elsevier Science B.V. All rights reserved.
منابع مشابه
Joint influence of leakage delays and proportional delays on almost periodic solutions for FCNNs
This paper deals with fuzzy cellular neural networks (FCNNs) with leakage delays and proportional delays. Applying the differential inequality strategy, fixed point theorem and almost periodic function principle, some sufficient criteria which ensure the existence and global attractivity of a unique almost periodic solution for fuzzy cellular neuralnetworks with leakage delays and p...
متن کاملPeriodic solutions of recurrent neural networks with distributed delays and impulses on time scales
In this paper, by using the continuation theorem of coincidence degree theory, M−matrix theory and constructing some suitable Lyapunov functions, some sufficient conditions are obtained for the existence and global exponential stability of periodic solutions of recurrent neural networks with distributed delays and impulses on time scales. Without assuming the boundedness of the activation funct...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملAnti-periodic Solutions for Recurrent Neural Networks without Assuming Global Lipschitz Conditions
In this paper we study recurrent neural networks with time-varying delays and continuously distributed delays. Without assuming global Lipschitz conditions on the activation functions, we establish the existence and local exponential stability of anti-periodic solutions.
متن کاملGlobal Asymptotic and Exponential Stability of Tri-Cell Networks with Different Time Delays
In this paper, a bidirectional ring network with three cells and different time delays is presented. To propose this model which is a good extension of three-unit neural networks, coupled cell network theory and neural network theory are applied. In this model, every cell has self-connections without delay but different time delays are assumed in other connections. A suitable Lyapun...
متن کامل